Chemistry A

Advanced GCE A2 H434

Mark Schemes for the Units

January 2010

F322 Chains, Energy and Resources

Question		Expected Answers	Marks	Additional Guidance	
$\mathbf{1}$	(a)		$\begin{array}{l}\text { Fractional distillation } \checkmark \\ \text { Because fractions have different boiling points } \checkmark\end{array}$	$\mathbf{2}$	DO NOT ALLOW just 'distillation'
For fractions, ALLOW components OR hydrocarbons OR					
compounds					
ALLOW condense at different temperatures					
ALLOW because van der Waals' forces differ between					
molecules					
IGNORE reference to melting points					
IGNORE 'crude oil' OR 'mixture' has different boiling					
points'					
(...... but ALLOW 'separates crude oil by boiling points					

Question		Expected Answers	Marks	Additional Guidance
				Better fuel is NOT sufficient Burns more cleanly is NOT sufficient
(c)	(i)	$\mathrm{C}_{10} \mathrm{H}_{22}+15^{1 / 2} \mathrm{O}_{2} \longrightarrow 10 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}$ All four species correct \checkmark balancing of four correct species \checkmark	2	ALLOW any correct multiple IGNORE state symbols
	(ii)	$\mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} \checkmark$	1	ALLOW any correct multiple including fractions IGNORE state symbols The mark is for the equation IGNORE writing

Quest		Expected Answers	Marks	Additional Guidance
(d)	(i)	Species with an unpaired electron \checkmark	1	ALLOW atom, molecule or particle with an unpaired electron ALLOW 'has an unpaired electron' ALLOW particle formed by homolytic fission DO NOT ALLOW particle with a single electron OR particle with a free electron
	(ii)	catalyst \checkmark	1	
	(iii)	$\mathrm{O}+\mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}$ OR O reacts with O_{2} to make ozone OR the reaction is reversible Rate of formation of ozone is the same as rate of decomposition \checkmark	2	$\text { ALLOW } \mathrm{O}_{2}+\mathrm{O} \rightleftharpoons \mathrm{O}_{3} \quad \mathrm{OR} \quad \mathrm{O}_{3} \rightleftharpoons \mathrm{O}_{2}+\mathrm{O} \checkmark \checkmark$ ALLOW is in equilibrium $\mathrm{OR} \rightleftharpoons$ in correct equation OR has steady state condition \checkmark IGNORE other equations involving ozone
	(iv)	absorbs (harmful) UV \checkmark	1	ALLOW 'keeps out UV' OR 'filters UV' ALLOW increased UV could cause skin cancer OR increased UV could cause cataracts OR increased UV could cause mutation of crops \checkmark IGNORE gamma
		Total	15	

Question		Expected Answers	Marks	Additional Guidance
	(iv)	Correct curve for higher temperature Activation energy does not change OR clearly labelled on diagram, e.g. E_{a} OR $E \checkmark$ More molecules have energy above activation energy OR more molecules have enough energy to react \checkmark	3	maximum of curve to right AND lower than maximum of original curve AND above dotted line at higher energy as shown in diagram below IGNORE minor point of inflexion of curve Note that the diagram above would score all 3 marks More successful collisions is not sufficient
(b)	(i)	$\begin{aligned} & \frac{34.0}{267.4} \times 100 \\ & 12.7 \% \checkmark \end{aligned}$	2	First mark for 267.4 OR (34.0 + 233.4) OR (169.3 + 98.1) at bottom of fraction with or without $\times 100$ ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 OR 12.7 OR 12.72 OR 12.715 up to calculator value with no working out 12.71 scores one mark only NO ECF for this part from incorrect numbers in first expression

Question		Expected Answers	Marks	Additional Guidance
	(ii)	Any three from the following: Oxygen comes from air \checkmark No poisonous materials formed OR no poisonous materials involved \checkmark No waste products formed OR atom economy is 100% Anthraquinone is regenerated OR recycled OR used again OR Anthraquinone acts as a catalyst \checkmark	3	IGNORE hydrogen comes from the air IGNORE harmful ALLOW higher atom economy
(c)		Bond breaking absorbs energy AND bond making releases energy \checkmark More energy released than absorbed \checkmark	2	ALLOW bond breaking is endothermic AND bond making is exothermic ALLOW exothermic change transfers more energy than endothermic change OR bond making transfers more energy than bond breaking OR '(the sum of the) bond enthalpies in the products is greater than the (sum of the) bond enthalpies in the reactants' OR '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken' IGNORE reference to strong and weak bonds IGNORE enthalpy of products is less than enthalpy of reactants
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
3	(a)		Respiration \checkmark	1	IGNORE anaerobic
	(b)	(i)	$\begin{aligned} & 100 \times 4.18 \times 17.3 \checkmark \\ & 7.23(\mathrm{~kJ}) \checkmark \end{aligned}$	2	ALLOW $7231 \mathrm{~J} \checkmark$ ALLOW 7.23 with no working out ALLOW from 7.2 up to calculator value of 7.2314 ALLOW from 0.060 up to calculator value for 1 mark (i.e. ECF from use of $m=0.831$ in first stage) IGNORE sign
		(ii)	$\begin{aligned} & M_{\mathrm{r}}=180 \checkmark \\ & \text { amount }=4.62 \times 10^{-3}(\mathrm{~mol}) \end{aligned}$	2	ALLOW 4.6×10^{-3} OR 4.62×10^{-3} OR 4.617×10^{-3} up to calculator value DO NOT ALLOW 0.005 ALLOW ECF from wrong M_{r}
		(iii)	$\Delta H_{\mathrm{c}}=1560(\mathrm{~kJ})$ OR $1570(\mathrm{~kJ})$ but answer must be to 3 sig fig \checkmark minus sign \checkmark	2	ALLOW ECF from 'answer to (i) \div answer to (ii)' but answer must be to 3 sig fig minus mark is an independent mark

Quest	Expected Answers	Marks	Additional Guidance
(c)	$\begin{aligned} & +1250 \checkmark \\ & +(-394 \times 6)+(-286 \times 6) \text { OR }-4080 \\ & -2830 \checkmark \end{aligned}$	3	ALLOW full marks for -2830 with no working out ALLOW for 2 marks: +2830 cycle wrong way around OR 1400 OR 860 one value not $\times 6$ OR -5330 OR +5330 wrong sign for 1250 or 4080 OR $+570 \checkmark \checkmark$ correct cycle but not $\times 6$ ALLOW for 1 mark: -1400 OR -860 cycle wrong way around and one value not $\times 6$ OR -570 cycle wrong way around and not $\times 6$ OR -1930 OR $+1930 \checkmark$ wrong sign and not $\times 6$ Note: There may be other possibilities.
(d)	Any two from the following: Heat released to the surroundings \checkmark Incomplete combustion OR incomplete reaction OR not everything burns \checkmark Non-standard conditions \checkmark	2	ALLOW heat loss IGNORE reference to evaporation
	Total	12	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	$\mathrm{CH}_{4}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr} \checkmark$	1	ALLOW any correct multiple IGNORE state symbols
		(ii)	Dibromomethane OR tribromomethane OR tetrabromomethane	1	ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. $\mathrm{CH}_{2} \mathrm{Br}_{2}$
		(iii)	$\mathrm{Br}_{2} \longrightarrow 2 \mathrm{Br}$ OR homolytic fission of bromine $\begin{aligned} & \mathrm{Br}+\mathrm{CH}_{4} \longrightarrow \mathrm{HBr}+\mathrm{CH}_{3} \checkmark \\ & \mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br} \checkmark \end{aligned}$ $\mathrm{Br}+\mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}$ $\mathrm{OR} \mathrm{Br}+\mathrm{Br} \longrightarrow \mathrm{Br}_{2} \checkmark$ Ethane made when two methyl radicals react $\mathrm{OR} \mathrm{CH}_{3}+\mathrm{CH}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6} \downarrow$ Quality of Written Communication - Consists of initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to correct equation: 2 names of steps linked to correct equations \checkmark BUT 3 names of steps linked to correct equations $\checkmark \checkmark$	7	All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination If no equations are given to link the names of the step then award one mark for mention of all three steps

Quest	Expected Answers	Marks	Additional Guidance
(b)	EITHER Nucleophilic substitution \checkmark Example of nucleophilic substitution \checkmark Heterolytic fission \checkmark C-I curly arrow \checkmark Correct dipole on C - I bond \checkmark OH^{-}curly arrow from one lone pair on O of OH^{-}ion OR from minus sign on OH^{-}ion \checkmark OR Electrophilic addition \checkmark Example of electrophilic addition \checkmark Heterolytic fission \checkmark Curly arrow from $\mathrm{C}=\mathrm{C}$ bond to $\mathrm{Br}-\mathrm{Br}$ bond and Dipole and curly arrow associated with $\mathrm{Br}_{2} \checkmark$ Correct carbocation ion \checkmark Curly arrow from one lone pair on Br^{-}ion OR from minus sign on Br^{-}ion \checkmark	6	The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism If curly half arrows drawn do not give a mark the first time used and then apply ECF ALLOW mechanisms for other halogenoalkaes ALLOW mechanisms for other halogens and hydrogen halides
	ALLOW Electrophilic substitution \checkmark Example of electrophilic substitution \checkmark Heterolytic fission \checkmark Curly arrow from benzene ring to the electrophile (i.e. $\mathrm{NO}_{2}^{+} \mathrm{OR} \mathrm{Br}^{+}$) \checkmark Correct intermediate \checkmark Curly arrow to show loss of hydrogen ion \checkmark	ALL Nuc Exa Hete Corr Curl OR Curl	W philic addition \checkmark le of nucleophilic addition \checkmark lytic fission \checkmark t dipole on carbonyl group \checkmark arrow from lone pair on H^{-}ion m minus sign on H^{-}to $\mathrm{C}=\mathrm{O}$ carbon and breaking of $\mathrm{C}=\mathrm{O}$ bond \checkmark arrow from carbonyl oxygen to either H^{+}or $\mathrm{H}_{2} \mathrm{O} \checkmark$
	Total	15	

Question		Expected Answers	Marks	Additional Guidance
(e)	Any two marks from the following: Develop photodegradable polymers \checkmark Develop biodegradable polymers OR develop compostable polymers \checkmark Develop techniques for cracking polymers OR develop use as a chemical feedstock \checkmark Develop ways of making polymers from plant-based substances OR reduce the need to use finite raw materials such as crude oil \checkmark Designing processes with high atom economy OR reduce waste products during manufacture \checkmark Develop ways of sorting AND recycling polymers \checkmark			

Question			Expected Answers	Marks	Additional Guidance	
6	(a)	(i)	2-Methylpropan-2-ol \checkmark	1	ALLOW methylpropan-2-ol	
	(b)			1	Formula must be skeletal AND not include any symbol except for OH	
	(c)	(i)	Same molecular formula but different structural formulae \checkmark	1	ALLOW Same molecular formula but different arrangement of atoms OR Same molecular formula but different structures OR Same molecular formula but different displayed formulae DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms	
		(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{OH} \checkmark$ ALLOW OR	1	ALLOW displayed formula ALLOW sticks (i.e. no H shown bonded to C)	
					ALLOW sticks OK and -OH is OK	DO NOT ALLOW OH shown as below sticks OK but OH - is not OK
					ALLOW correct ethers	

Question		Expected Answers	Marks	Additional Guidance
(d)		Has O-H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) \checkmark Forms hydrogen bonds with water (molecules) \checkmark	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
(e)		$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ 1 mark for each ester end of molecule $\checkmark \checkmark$	2	ALLOW displayed formula OR skeletal formula ALLOW sticks $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ shows one of the two ester groups and scores one mark
(f)	(i)		2	DO NOT ALLOW i.e. no ECF
	(ii)	$E / Z \checkmark$	1	ALLOW cis-trans IGNORE geometric
	(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ OR but-1-ene \checkmark	1	If but-1-ene given in part (i), ALLOW but-2-ene $\mathbf{O R ~} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ i.e. ECF from $f(i)$ DO NOT ALLOW methylpropene:

From the evidence, candidates may have identified compound F as propanone, propanal or propanoic acid

- The mark scheme for $\mathbf{F}=$ propanone and propanal is shown in the 'Expected Answers' column.
- The mark scheme for $\mathbf{F}=$ propanoic acid is shown in the 'Additional Guidance' column.

If F is propanone or propanoic acid, then maximum score $=7$; but if F is propanal then maximum score $=6$

Extra guidance for marking of Q6(g)
If \mathbf{E} has not been identified $O R$ if F has been identified as a ketone or aldehyde,
use the left-hand mark scheme

If F has been identified as a carboxylic acid
use the right-hand mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.

The positive sign for fragment ions is not required. IGNORE negative charge.
The mass spec may well be on the actual spectrum.

IR mark

These stand as independent marks whichever compounds have been identified.
The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must both be correct
but allow 'propanol' drawn with the correct structure because the position number of the -OH has been clearly identified
ALLOW ECF for identification of F e.g. if E is pentan-2-ol x then an answer of pentan-2-one for F will be given a mark \checkmark as $E C F$
ALLOW identification marks for \mathbf{E} and \mathbf{F} from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate product
ALLOW molecular formulae in equations,
i.e. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark$;
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \checkmark ;$
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COH}+\mathrm{H}_{2} \mathrm{O} \checkmark$

Question			Expected Answers	Marks	Additional Guidance
7	(a)	(i)	Infrared (radiation absorbed) by (C-H) bond vibration \checkmark	2	ALLOW bond stretching OR bond bending DO NOT ALLOW molecules vibrating
		(ii)	Greater concentration of carbon dioxide OR more carbon dioxide is being made \checkmark	1	ALLOW carbon dioxide is the main contributor to global warming DO NOT ALLOW any response that states that CO_{2} causes ozone depletion ALLOW C=O bonds absorb IR more readily than $\mathrm{C}-\mathrm{H}$ bonds ALLOW carbon dioxide has a greater greenhouse effect

Grade Thresholds

Advanced GCE Chemistry A (H034/H434)
January 2010 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	a	b	c	d	e	\mathbf{u}
F321	Raw	60	46	40	35	30	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	77	68	59	51	43	0
	UMS	150	120	105	90	75	60	0
F324	Raw	60	43	38	33	29	25	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{H 0 3 4}$	12.9	37.5	62.7	83.1	96.2	100	1415

1415 candidates aggregated this series.

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
Statistics are correct at the time of publication.

